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Aperiodic spin chain in the mean field approximation
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Abstract. Surface and bulk critical properties of an aperiodic spin chain are investigated in the
framework of theφ4 phenomenological Ginzburg–Landau theory. According to Luck’s criterion,
the mean field correlation length exponentν = 1

2 leads to a marginal behaviour when the
wandering exponent of the sequence isω = −1. This is the case of the Fibonacci sequence that
we consider here. We calculate the bulk and surface critical exponents for the magnetizations,
critical isotherms, susceptibilities and specific heats. These exponents continuously vary with
the amplitude of the perturbation. Hyperscaling relations are used in order to obtain an estimate
of the upper critical dimension for this system.

1. Introduction

The discovery of quasicrystals [1] has focused considerable interest on quasiperiodic
or, more generally, aperiodic systems [2]. In the field of critical phenomena, due to
their intermediate situation between periodic and random systems, aperiodic models have
been intensively studied (for a review, see [3]). Furthermore, aperiodic multilayers are
experimentally feasible and should build a new class of artificial structures exhibiting
interesting bulk and surface properties. Although aperiodic superlattices have already been
worked out by molecular beam epitaxy [4], nothing experimental has been done up to
now from the point of view of critical phenomena. In the perspective of possible future
experimental studies in this context, it seems an interesting and challenging problem to
complete our understanding through a mean field theory approach. Surface critical behaviour
has indeed been intensively investigated on the basis of the Ginzburg–Landau theory [5]
in the 1970s [6]. This led to a classification of the transitions which may occur at the
surface and to the derivation of scaling laws between surface and bulk critical exponents
[7] (for a review, see [8]). These early papers are known as an important stage in the further
developments of surface critical phenomena.

From the point of view of critical phenomena, the universal behaviour of aperiodically
perturbed systems is now well understood since Luck proposed a relevance–irrelevance
criterion [9, 10]. The characteristic length scale in a critical system is given by the correlation
length and, as in the Harris criterion for random systems [11], the strength of the fluctuations
of the couplings on this scale determines the critical behaviour. An aperiodic perturbation
can thus be relevant, marginal or irrelevant, depending on the sign of a crossover exponent
involving the correlation length exponentν of the unperturbed system and the wandering
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exponentω which governs the size-dependence of the fluctuations of the aperiodic couplings
[12]. In the light of this criterion, the results obtained in early papers, mainly concentrated
on the Fibonacci [13] and the Thue–Morse [14] sequences, found a consistent explanation,
since, resulting from the bounded fluctuations, a critical behaviour which resembles the
periodic case was found for the Ising model in two dimensions.

In recent years, much progress has been made in the understanding of the properties
of marginal and relevant aperiodically perturbed systems. Exact results for the 2d layered
Ising model and the quantum Ising chain have been obtained with irrelevant, marginal
and relevant aperiodic perturbations [15, 16]. The critical behaviour is in agreement with
Luck’s criterion leading to essential singularities or first-order surface transition when the
perturbation is relevant and power laws with continuously varying exponents in the marginal
situation with logarithmically diverging fluctuations. A strongly anisotropic behaviour has
been recognized in this latter situation [17, 18]. Marginal surface perturbations have also
been studied with the Fredholm sequence [19] and conformal aspects have been discussed
[20].

In the present paper, we continue our study of marginal sequences. The case of the
Fibonacci sequence, which leads to irrelevant behaviour in the Ising model, should exhibit
non-universal properties within the mean field approach according to the Luck criterion
and it has not yet been studied in this context. The article is organized as follows.
In section 2, we present the phenomenological Ginzburg–Landau theory on a discrete
lattice with a perturbation following a Fibonacci sequence and we summarize the scaling
arguments leading to Luck’s criterion, then we discuss the definitions of both bulk and
surface thermodynamic quantities. In section 3 we consider magnetic properties; both bulk
and surface quantities are computed numerically, leading to the values of the corresponding
critical exponents. In section 4, we discuss the thermal properties and eventually in section 5,
we discuss the upper critical dimension of the model.

2. Discrete Ginzburg–Landau equations for a Fibonacci aperiodic perturbation

2.1. Landau expansion and equation of state on a one-dimensional lattice

Let us first briefly review the essentials of the Ginzburg–Landau theory formulated on a
discrete lattice. We consider a one-dimensional lattice ofL sites with a lattice spacing̀and
free boundary conditions. The critical behaviour would be the same as in ad-dimensional
plate of thicknessL` with translational invariance along thed − 1 directions perpendicular
to the chain and extreme axial anisotropy which forces the magnetic moments to keep
a constant direction in the plane of the plate. We investigate the critical properties of
an aperiodically distributed perturbation within the framework of aφ4 phenomenological
Landau theory [21]. The underlying assumption in this approach is based on the following
expansion of the bulk free energy density

fb{φj } = 1

2
µjφ

2
j +

1

4
gφ4

j −Hφj +
1

2
c

(
φj+1− φj

`

)2

(1)

where the aperiodic perturbation of the coupling constants is determined by a two-digits
substitution rule and enters theφ2 term only. A dimensional analysis indeed shows that
the deviation from the critical temperature,µ, is the relevant scaling field which has to be
modified by the perturbation. The free energy of the whole chain is thus given by

F [φj ] =
∑
j

fb{φj } (2)
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and the spatial distribution of order parameter satisfies the usual functional minimization

δF [φj ] = F [φj + δφj ] − F [φj ] = 0. (3)

One then obtains the coupled discrete Ginzburg–Landau equations

µjφj + gφ3
j −H −

c

`2
(φj+1− 2φj + φj−1) = 0. (4)

The coefficientsµj depend on the site location and are written as

µj = kBT − (zJ − Rfj ) = a0

(
1− 1

θ
+ rfj

)
(5)

whereJ is the exchange coupling between neighbour sites in the homogeneous system,
z is the lattice coordination andfj is the aperiodically distributed sequence of 0 and 1.
The prefactora0 = kBT is essentially constant in the vicinity of the critical point, and
the temperatureθ is normalized relatively to the unperturbed system critical temperature:
θ = kBT /zJ . In the following, we will also use the notationµ = 1−1/θ . In order to obtain
a dimensionless equation, let us defineφj = mj

√
a0/g leading to the following nonlinear

equations for themj ’s

(µ+ rfj )mj +m3
j − h− (mj+1− 2mj +mj−1) = 0 (6)

with boundary conditions

(µ+ rf1)m1+m3
1− h− (m2− 2m1) = 0 (7a)

(µ+ rfL)mL +m3
L − h− (−2mL +mL−1) = 0. (7b)

Here, the lengths are measured in units of` = √c/a0 and h = H

√
g/a3

0 is a reduced
magnetic field.

One can point out the absence of a specific surface term in the free energy density.
The surface equations for the order parameter profile simply keep the bulk form with the
boundary conditionsm0 = mL+1 = 0 and our study will only concern ordinary surface
transitions [8].

2.2. Fibonacci perturbation and Luck’s criterion

The Fibonacci perturbation considered below may be defined as a two-digits substitution
sequence which follows from the inflation rule

0→ S(0) = 01 1→ S(1) = 0 (8)

leading, by iterated application of the rule on the initial word 0, to successive words of
increasing lengths

0

0 1

0 1 0

0 1 0 0 1

0 1 0 0 1 0 1 0

. . . .

(9)
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It is now well known that most of the properties of such a sequence can be characterized
by a substitution matrix whose elements,Mij , are given by the number,nS(j)i , of digits of
type i in the substitutionS(j) [9, 12]. In the case of the Fibonacci sequence, this yields

M =
(
n
S(0)
0 n

S(1)
0

n
S(0)
1 n

S(1)
1

)
=
(

1 1
1 0

)
. (10)

The largest eigenvalue of the substitution matrix is given by the golden mean31 = 1+√5
2

and is related to the length of the sequence aftern iterations,Ln ∼ 3n
1, while the second

eigenvalue32 = −1/31 governs the behaviour of the cumulated deviation from the
asymptotic density of modified couplingsρ∞ = 1− 2√

5+1

L∑
j=1

(fj − f̄ ) = nL − ρ∞L ∼ |32|n ∼ (3ω
1 )
n (11)

where we have introduced the sumnL =
∑L
j=1 fj and the wandering exponent

ω = ln |32|
ln31

= −1. (12)

When the scaling fieldµ is perturbed as considered in the previous section,

µj = a0(µ+ rfj ) (13)

the cumulated deviation of the couplings from the average at a length scaleL

δµ(L) = 1

L

L∑
j=1

(µj − µ̄) = 1

L
a0r(nL − ρ∞L) (14)

behaves with a size power law

δµ(L) ∼ Lω−1 (15)

and induces a shift in the critical temperatureδt ∼ ξω−1 to be compared with the deviation
t from the critical temperature

δt

t
∼ t−(ν(ω−1)+1). (16)

This defines the crossover exponentφ = ν(ω − 1) + 1. Whenφ = 0, the perturbation is
marginal: it remains unchanged under a renormalization transformation, and the system is
thus governed by a new perturbation-dependent fixed point.

A perturbation of the parametersg or c entering the Landau expansion (1) would be
irrelevant.

2.3. Bulk and surface thermodynamic quantities

In the following, we discuss both bulk and surface critical exponents and scaling functions.
We deal with the surface and boundary magnetizationsms andm1, surface and boundary
susceptibilitiesχs andχ1, and surface specific heatCs . All these quantities can be expressed
as derivatives of the surface free energy densityfs [8] (see table 1).

While there is no need to pay special attention to these definitions in a homogeneous
system, they have to be carefully rewritten in the perturbed model that we consider here.
First of all, we shall focus on local quantities such as the boundary magnetizationm1

or the local bulk magnetizationm(n−1), defined, for a chain of sizeLn obtained aftern
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Table 1. Bulk and surface thermodynamic quantities in terms of the bulkfb and surfacefs
free energy densities.h andh1 are bulk and surface magnetic fields respectively andt is the
reduced temperature.

Magnetization Susceptibility Specific heat

Bulk Surface Bulk Surface Bulk Surface

mb = − ∂fb
∂h

ms = − ∂fs
∂h

χb = − ∂
2fb

∂h2
χs = − ∂

2fs

∂h2
Cb = − ∂

2fb

∂t2
Cs = − ∂

2fs

∂t2

m1 = − ∂fs
∂h1

χ1 = − ∂2fs

∂h∂h1

χ11 = − ∂
2fs

∂h2
1

Figure 1. Fibonacci chain of 21 sites. The local bulk magnetization, for a chain ofLn sites
obtained aftern iterations of the substitution rule is computed on the siteLn−1, here site 13.

substitutions, by the order parameter at positionLn−1. This definition leads to equivalent
sites for different chain sizes (see figure 1).

In addition to these local quantities, one may also calculate both surface and mean bulk
magnetizations (ms andmb respectively), which should be interesting from an experimental
point of view since any experimental device would average any measurement over a large
region compared with a microscopic scale. In order to keep symmetric sites with respect
to the middle of the chain, and to avoid surface effects, the mean bulk magnetizationmb is
defined by averaging overLn−2 sites around the middle for a chain of sizeLn

mb = 1

Ln−2

∑
j∈Ln−2

mj . (17)

We numerically checked that one recovers the same average as for a chain of sizeLn−2

with periodic boundary conditions. Following Binder [8], for a film of sizeLn with two
free surfaces, the surface magnetization is then defined by the deviation of the average
magnetization〈mj 〉 over the whole chain from the bulk mean value

ms = 1

2

(
mb − 1

Ln

Ln∑
j=1

mj

)
. (18)

A graphical description can be found in figure 2.
In the following, we shall use brackets for the averages over the finite system, taking

thus surface effects into account. In the same way, the bulk free energy density in table 1
has to be understood as

fb = 1

Ln−2

∑
j∈Ln−2

fb{mj } (19)
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Figure 2. Typical shape of the order parameter profile for a perturbed system, showing the
boundary and local bulk magnetizationsm1 andm(n−1), and the average valuesmb and〈mj 〉.

while the surface free energy density,fs , is defined as the excess from the average bulk
free energy

F =
Ln∑
j=1

fb{mj } = Ln〈fb〉 = Lnfb + 2fs. (20)

3. Magnetic properties

3.1. Order parameter profile and critical temperature

The order parameter profile is determined numerically by a Newton–Raphson method,
starting with arbitrary values for the initial trial profilemj . Equation (6) provides a system
of L-coupled nonlinear equations

Gi(m1, m2, . . . , mL) = 0 i = 1, 2, . . . , L (21)

for the components of the vectorm = (m1, m2, . . . , mL), which can be expanded in a
first-order Taylor series

Gi(m+ δm) = Gi(m)+
L∑
j=1

∂Gi

∂mj
δmj +O(δm2). (22)

A set of linear equations follows for the correctionsδm

L∑
j=1

∂Gi

∂mj
δmj = −Gi(m) (23)

which moves each functionGi closer to zero simultaneously. This technique is known
to provide a fast convergence towards the exact solution. Typical examples of the profile
obtained for the Fibonacci perturbation are shown in figure 3.

The magnetization profile decreases as the temperature is increased and vanishes for
some size-dependent effective value of the critical temperatureµc(L) = 1 − (θc(L))−1.
This value may be obtained through a recursion relation deduced from the equation of state.
In the high temperature phase, whenh = 0, equation (6) can be rewritten as a homogeneous
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Figure 3. Order parameter profiles for a perturbationr = 2 and three values of the temperature
below the critical point. The size of the chain isL = 144.

system of linear equations

Gm =


α1 −1 0 0 . . . 0
−1 α2 −1 0 . . . 0

0 −1 α3 −1
. . .

...
...

...
. . . αj

. . .
...

0 . . . 0 0 −1 αL




m1

m2
...
...

mL

 = 0 (24)

whereαj = 2 + µ + rfj . If the determinantDL(µ) = DetG(µ) is not vanishing, the
null vectorm = 0 provides the satisfying unique solution for the high temperature phase.
The critical temperature is then defined by the limiting valueµc(L) which allows a non-
vanishing solution form, i.e. DL(µc) = 0. Because of the tridiagonal structure of the
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Figure 4. Log–log plot of the bulk and boundary magnetization versus the reduced temperature
t = µc −µ for two values of the aperiodic amplituder and for different sizes of the chain from
144 to 46 368. Finite-size effects occur when the curves deviate from the asymptotic straight
line. The insert shows the behaviour of the magnetization with the temperature.

determinant, the following recursion relation holds, for any value ofµ

DL(µ) = αLDL−1(µ)−DL−2(µ) (25a)

D0(µ) = 1 (25b)

D1(µ) = α1. (25c)

Thus, we can obtainµc(L) for different sizes ofL, from 144 to 46 368 and estimate
the asymptotic critical point by an extrapolation to infinite size. This technique allows a
determination of the critical temperature with an absolute accuracy in the range 10−7–10−9

depending on the value of the amplituder.

3.2. Surface and bulk spontaneous magnetization behaviours

The boundary magnetizationm1 vanishes at the same temperature as the profile itself.
First of all, the influence of finite size effects [22] has to be studied. This is done by
the determination of the profiles for different lengths of chains given by the successive
sizes of the Fibonacci sequenceL = 1, 2, 3, 5, 8, 13, 21, 34. . .. The boundary and bulk
magnetization in zero magnetic field are shown in figure 4 on a log–log scale.

The finite size effects appear in the deviation from the straight line asymptotic behaviour.
These effects are not too sensitive, as it can be underscored by considering the deviation of
the curve for a sizeL = 17 711, which occurs aroundt = µc − µ ' 10−7, i.e. very close
to the critical point.

The expected marginal behaviour is furthermore indicated by the variation of the
slopes with the aperiodic modulation amplituder and is more noticeable for the boundary
magnetization than in the case of the bulk.

A more detailed inspection of these curves also shows oscillations resulting from the
discrete scale invariance [23] of the system and the asymptotic magnetization can thus be
written

m(t) = tβm̃(t−ν) (26)
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Figure 5. Periodic oscillations of the rescaled boundary magnetizationm1t
−β1 versus lnt−ν .

The deviation from the oscillating behaviour for large values of the correlation lengtht−ν is due
to finite-size effects. The insert shows the oscillations of the rescaled boundary magnetization
for different values ofr after subtraction of a constant amplitude.

where m̃(t−ν) is a log-periodic scaling function of its argument. We make use of this
oscillating behaviour to obtain a more precise determination of the critical temperature (in
the range 10−11–10−12) and of the values of the bulk and surface exponents by plotting the
rescaled magnetizationmt−β as a function of lnt−ν as shown in figure 5 in the case of the
first layer.

The values ofµc andβ1 that we consider suitable are the ones which allow an oscillating
behaviour for the widest interval in the variable lnt−ν . A modification of the boundary
exponentβ1 would change the average slope of the oscillating regime. This could be due
to corrections to scaling, but, if such corrections really existed, they should cancel in this
range of temperatures (in the oscillating regime,t goes to values as small as 10−9). The
other parameters,µc, modifies the number of oscillations and we have chosen a value
leading to the largest number of such oscillations. A poor determination of the critical
pointµ′c = µc +1µc would indeed artificially introduce a correction to scaling term, since
tβ = (t ′ +1µc)β ∼ t ′β(1+ β 1µct ′ ).

The corresponding values ofθc, β1 and β(n−1) are given for several values of the
perturbation amplituder in table 2. The critical exponent associated to the right surface
(mL) of the Fibonacci chain has also been computed for different values ofr for the largest
chain size. It gives, with a good accuracy, the same value as for the left surface(m1) as
it can be seen by inspection in the table. The aperiodic sequence is indeed the same, seen
from both ends, if we forget the last two digits.

Furthermore, the profiles of figure 3 clearly show that the sites of the chain are not all
equivalent and the magnetization profiles can be locally rescaled with different values of
the exponents depending on the site [18]. Thus, after the local quantities, the computation
of the surface and mean bulk magnetizations enable us to determine the critical exponents
respectively written asβs andβb and given in table 2.

From our values, one obviously recovers the usual unperturbed ordinary transition values
of the exponents when the perturbation amplitude goes to zero.



1356 P E Berche and B Berche

Table 2. Numerical values of the critical temperature and the magnetic exponents for the surface
and bulk magnetizations. The figure in parentheses gives the uncertainty on the last digit.

Surface Bulk

r θc β1 βL βs β(n−1) βb

0.1 0.963 977 634 341 (5) 1.000 36 (2) — 0.0002 (2) 0.500 087 (1) 0.5002 (2)
0.2 0.931 876 799 29 (2) 1.001 46 (2) 1.0015 (1) — 0.500 33 (1) —
0.3 0.903 145 033 63 (2) 1.003 4 (1) 1.0034 (1) — 0.500 72 (6) —
0.5 0.854 041 490 87 (2) 1.009 2 (1) — 0.0094 (2) 0.501 87 (1) 0.505 (1)
0.8 0.796 437 160 887 (5) 1.022 14 (2) — 0.0216 (2) 0.504 19 (2) —
1.0 0.766 005 950 95 (2) 1.032 7 (1) — 0.0302 (2) 0.505 777 (2) 0.516 (1)
1.5 0.709 022 416 01 (2) 1.062 1 (1) — — 0.509 43 (1) —
2.0 0.670 109 092 37 (2) 1.091 3 (1) — 0.087 (1) 0.511 86 (3) 0.538 (1)
2.5 0.642 346 292 79 (2) 1.117 8 (1) — — 0.512 94 (1) —
3.0 0.621 796 760 462 (5) 1.141 0 (1) 1.1410 (1) 0.133 (1) 0.513 2 (1) 0.555 (1)
3.5 0.606 105 675 08 (2) 1.160 2 (1) — — 0.513 27 (4) —
4.0 0.593 804 120 472 (5) 1.176 6 (1) — 0.1692 (4) 0.513 0 (1) 0.563 (1)
4.5 0.583 941 173 69 (2) 1.190 4 (1) — — 0.512 2 (1) —
5.0 0.575 880 529 524 8 (5) 1.202 6 (1) — 0.195 (1) 0.511 25 (2) 0.567 (1)

3.3. Susceptibility and critical isotherm

Taking account of a non-vanishing bulk magnetic field in equations (6) and (7), one can
compute the magnetization in a finite field and then deduce the critical isotherms exponents
δ(n−1) andδ1 from the behaviour of the local magnetizationsm(n−1) andm1 with respect to
h

m(n−1) ∼ h1/δ(n−1) m1 ∼ h1/δ1 t = 0. (27)

This time, a direct log–log plot allows a precise determination of the exponents and
the rescaled equation of state confirms the validity of the estimate since we obtain a good
data collapse. In the case of the boundary magnetization, the scaling assumption takes the
following form under rescaling by an arbitrary factorb

m1(t, h) = b−β1/νm1(b
yt t, byhh) (28)

where yt is given by the inverse of the correlation length exponentyt = 1/ν and the
value of the magnetic field anomalous dimensionyh follows the requirements of (27):
yh = β1δ1/ν = βδ/ν. The choiceb = t−ν for the rescaling factor then leads to a universal
behaviour expressed in terms of a single scaled variable

m1(t, h) = tβ1f ±m1
(ht−1) (29)

where1 = β1δ1 is the so-called gap exponent,f ±m1
is a universal scaling function and±

refers to the two phasesθ > θc andθ < θc. This may then be checked by a plot ofm1t
−β1

versusht−1 shown in figure 6 and the same type of universal functions have been obtained
for the local bulk sitem(n−1)t

−β(n−1) = f ±m(n−1)
(ht−1). The values ofδ1 andδ(n−1) are given

in table 3.
The behaviours ofms andmb with h at the critical point lead to the values ofδs andδb,

also listed in table 3. We can point out the low accuracy in the determination ofδs since
the slope of the log–log plot ofms versush is quite small whenr reaches the unperturbed
valuer = 0.

The derivative of equation (28) with respect to the bulk magnetic fieldh defines the
boundary susceptibilityχ1 which diverges as the critical point is approached with an
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Figure 6. Rescaled equations of state for the boundary and bulk magnetization forr = 2.
The values of the temperature areθ = 0.670 090, 0.670 094, 0.670 097, 0.670 100, 0.670 103,
0.670 105 belowθc and 0.670 111, 0.670 113, 0.670 115, 0.670 118, 0.670 121, 0.670 125 above
θc. Top: scaling functionsf±m1

, the insert shows the boundary magnetization as a function of
the bulk magnetic field. Bottom: same as above for the local bulk magnetization.

Table 3. Numerical values of the critical exponents associated to the critical isotherms and the
susceptibilities.γb andδb correspond to the behaviour of the mean bulk magnetizationmb. The
figure in parentheses gives the uncertainty on the last digit.

Surface Bulk

r γ1 δ1 γs δs γ(n−1) δ(n−1) γb δb

0.1 0.5013 (2) 1.5024 (2) 1.498 (1) — 0.9997 (1) 2.9989 (1) 1.000 5 (1) —
0.2 0.5006 (2) 1.5004 (2) — — 0.9993 (2) 2.9972 (3) — —
0.3 0.4992 (2) 1.4977 (2) — — 0.9993 (2) 2.9949 (9) — —
0.5 0.4958 (2) 1.4901 (2) 1.493 (1) 312 (11) 0.9989 (2) 2.9895 (9) 0.997 90 (2) 2.981 36 (2)
0.8 0.487 (1) 1.4751 (3) 1.486 (1) 85 (2) 0.9986 (3) 2.981 (2) — —
1.0 0.4796 (2) 1.4641 (2) 1.480 (2) 53 (1) 0.9985 (4) 2.9744 (9) 0.992 53 (2) 2.931 44 (2)
1.5 0.4568 (2) 1.4378 (4) — — 0.9988 (7) 2.963 (3) — —
2.0 0.4316 (2) 1.4135 (1) 1.438 (2) 16.37 (2) 0.999 (2) 2.9571 (1) 0.9792 (1) 2.823 75 (3)
2.5 0.412 (1) 1.3845 (6) — — 0.9992 (9) 2.954 (2) — —
3.0 0.388 (1) 1.3484 (6) 1.394 (2) 11.2 (2) 0.9988 (6) 2.952 (2) 0.9660 (1) 2.751 3 (2)
3.5 0.372 (1) 1.3108 (5) — — 0.9986 (5) 2.949 (2) — —
4.0 0.354 (1) 1.2989 (4) 1.360 (2) 10.01 (5) 0.9988 (8) 2.948 (2) 0.9619 (5) 2.697 6 (3)
4.5 0.341 (1) 1.2571 (2) — — 0.999 (1) 2.950 (2) — —
5.0 0.328 (1) 1.2467 (6) 1.330 (2) 8.3 (4) 0.999 (2) 2.953 (2) 0.9514 (2) 2.659 38 (2)

exponentγ1. Numerically, the boundary magnetization is calculated for several values
of the bulk magnetic field (of the order of 10−9), and χ1 follows a finite difference
derivation. The bulk local susceptibilityχ(n−1) may be obtained in the same way. Log-
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Figure 7. Rescaled bulk susceptibility giving the behaviour of the universal functionsf±χ(n−1)
below and aboveθc for r = 2. The values of the temperature are the same as in figure 6. The
inserts show the behaviours ofχ(n−1) as a function ofh for the same temperatures (left), and
the singularities of bothχ(n−1) andχ1 in zero magnetic field as a function ofθ (right).

periodic oscillations also occur in these quantities and the determination of the exponents
can be done in the same way as in the previous section for the magnetization. Again,
the accuracy of the result is confirmed by the rescaled curves for the susceptibilities, for
exampleχ(n−1)t

γ(n−1) = f ±χ(n−1)
(ht−1) shown in figure 7 exhibits a good data collapse on two

universal curves forθ < θc andθ > θc.
The values of the exponents are given in table 3 which presents alsoγs andγb, associated

to the surface and average bulk magnetization field derivatives.

4. Specific heat

According to the definitions in section 2, the surface and bulk free energies are also defined
as follows

Fs = 1
2(FFBC− FPBC) (30a)

Fb = FPBC (30b)

whereFFBC andFPBC denote the total free energies of aperiodic chains with free and periodic
boundary conditions respectively and are obtained numerically using equations (19) and (20).

The expected singular behaviours of the free energy densities

fs(t, h) = t2−αs fs(ht−1) (31a)

fb(t, h) = t2−αbfb(ht−1) (31b)

where the dependence offs with the local magnetic surface fieldh1 has been omitted since
we always consider the caseh1 = 0, lead to the surface and bulk specific heat exponents.
The values ofαs andαb are simply deduced from the slopes of the log–log plots offs and
fb versust .

In figure 8, we show the bulk free energy density amplitudefbtαb−2 as a function
of ln t−ν for r = 2. It exhibits the same type of oscillating behaviour than the rescaled
magnetization of figure 5.
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Figure 8. Rescaled bulk free energy densityfbtαb−2 versus lnt−ν for r = 2. The amplitude of
the bulk free energy density exhibits log-periodic oscillations.

Table 4. Numerical values of the specific heat critical exponents. The figure in parentheses
gives the uncertainty on the last digit.

r αs αb

0.1 0.514 96 (7)−0.000 31 (1)
0.5 0.501 12 (5)−0.007 33 (1)
0.8 0.484 48 (5)−0.017 09 (1)
1.0 0.470 75 (4)−0.024 62 (1)
2.0 0.402 65 (1)−0.059 24 (1)
3.0 0.350 77 (4)−0.078 13 (1)
4.0 0.315 16 (3)−0.085 79 (1)
5.0 0.289 35 (6)−0.088 05 (1)

The surface and bulk specific heat exponents are collected in table 4. The bulk specific
heat discontinuity of the homogeneous system is washed out in the perturbed system, since
αb < 0.

5. Discussion

We have numerically calculated several surface and bulk critical exponents for a marginal
aperiodic system within mean field theory. The marginal aperiodicity leads to exponents
which vary continuously with the amplitude of the perturbationr. The variations of these
exponents are shown in figure 9 as a function ofr.

The comparison in table 2 between the bulk exponentβb and the local oneβ(n−1)

clearly shows that it is no longer possible, in this aperiodic system, to define a unique
bulk exponent, as it was already suggested by the possibility of a local rescaling of the
profiles with position-dependent exponents which suggests a multiscaling behaviour. A
constant valuey1 = 1/ν is consistent with continuously varying exponents, in order to
keep a vanishing crossover exponent which ensures that the marginality condition remains
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Figure 9. Variations of the surface and bulk exponents with the perturbation amplituder

(boundary exponents: ——, surface: —· —, local bulk: – – –, mean bulk: — — —).

valid for any value of the aperiodicity amplituder. On the other hand, foryh there is no
such reason. From this point of view, equations like (28) are not exact since a unique field
anomalous dimensionyh has no real significance. It follows that the universal functions in
figures 6 and 7 only give an approximate picture of the scaling behaviour in this system,
since they involve the gap exponent1 = yh/yt . The good data collapse has to be credited
to the weak variation of the exponents with the perturbation amplituder.

On the other hand, the scaling laws involving the dimension of the system are satisfied
in mean field theory with a value ofd equal to the upper critical dimensiond∗. As
for the 2d Ising model with a marginal aperiodicity [17, 18], one expects a strongly
anisotropic behaviour in the Gaussian model. It yields a continuous shift of the upper
critical dimension with the perturbation amplitude,d∗(r), since the valued∗ = 4 for a
critical point in the homogeneousφ4 theory follows Ginzburg’s criterion for an isotropic
behaviour. Hyperscaling relations should thus be satisfied for the mean field exponents with
d∗(r)

2− αb = νd∗(r) (32a)

2− αs = ν(d∗(r)− 1). (32b)

We can make use of these relations to obtain an estimate of the upper critical dimension
d∗(r) for this aperiodic system. The corresponding results are given in table 5.

The two determinations are in good agreement for small values of the perturbation
amplitude. The discrepancy at larger values ofr suggests that the precision in the
determination of the exponents has probably been overestimated, but the variation of the
upper critical dimension with the perturbation amplitude is clear and should be attributed
to an anisotropic scaling behaviour in the corresponding Gaussian model.

One can finally mention that a mean field approach for relevant aperiodic perturbations
would be interesting. Many cases of aperiodic sequences with a wandering exponent
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Table 5. Numerical values of the upper critical dimensiond∗(r) deduced from hyperscaling
relations.

r (2− αb)/ν (2− αs)/ν + 1

0.1 4.00 3.97
0.5 4.01 4.00
0.8 4.03 4.03
1.0 4.05 4.06
2.0 4.12 4.19
3.0 4.16 4.28
4.0 4.17 4.37
5.0 4.18 4.42

ω > −1 are known, they constitute relevant perturbations in mean field theory. In the
case of the 2d layered Ising model with relevant perturbations, a behaviour which looks
like random systems behaviour, with essential singularities, was found [16], and the same
type of situation can be expected within mean field approximation.
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Iglói F, Lajkó P and Szalma F 1995Phys. Rev.B 52 7159
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